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Abstract. We present a framework that jointly learns and then uses
multiple image windows for improved classification. Apart from using
the entire image content as context, class-specific windows are added, as
well as windows that target class pairs. The location and extent of the
windows are set automatically by handling the window parameters as
latent variables. This framework makes the following contributions: a)
the addition of localized information through the class-specific windows
improves classification, b) windows introduced for the classification of
class pairs further improve the results, c) the windows and classification
parameters can be effectively learnt using a discriminative max-margin
approach with latent variables, and d) the same framework is suited
for multiple visual tasks such as classifying objects, scenes and actions.
Experiments demonstrate the aforementioned claims.

1 Introduction

In this paper, we consider the classification problem of deciding whether one
of a number of pre-specified object classes, e.g. bicycle, motorbike, or person,
is present in an image. We show that also learning pairwise relations between
classes improves such classification: when having to tell whether or not a specific
target class is present, sharing knowledge about other, auxiliary classes supports
this decision.

Our method stands in contrast to standard classification approaches that
only exploit global [11] or local information [15, 1] about the target class. In
particular, we propose a framework that combines target class-specific global
and local information with information learnt for pairs of the target class and
each of a number of auxiliary classes. The advantage of adding such pairwise
information is that it aids generalization. The common context for a class pair
helps it being discriminated against other classes. For instance, similar classes
like ‘bicycle’ and ‘motorbike’ share features that enable to discriminate both
from other classes. The target class-specific parts of the models for ‘bicycle’
and ‘motorbike’ rather focus on specific nuances that are needed to discriminate
between the pair. Even if in this paper we often formulate the approach in terms
of object classification, the very same framework will be demonstrated for scene
and action classification just the same.

In summary, our target class model combines information about:
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1. global image appearance, using a spatial pyramid over the image, thereby
providing context information;

2. local appearance, based on a target class-specific window, loosely correspond-
ing to a bounding box;

3. shared appearances, based on a series of windows, each jointly defined for
the target class and one of the auxiliary classes with which there are visual
commonalities.

We show that all components of this combined representation can be learnt
jointly, with as only supervision the class label for the training images (i.e. which
target class appears in the images without any information on its location).

We have evaluated our approach for object, scene and action classification
tasks using standard benchmarks, after such joint learning of the global, local,
and shared components. We have experimentally evaluated each of these com-
ponents individually and jointly for solving these various problems. The results
show that adding the shared component is beneficial in all cases.

2 Related Work

Object classification is a well studied problem. A detailed survey has been pre-
sented by Pinz [20]. One of the more successful techniques is the use of spatial
pyramid representations [11] over a bag of visual words [6, 27, 1, 2]. One vari-
ation has been the use of multiple feature families [6, 26], the organization of
the spatial pyramid through sparse representations [27] or joint coding [2]. The
above methods all assume a global representation for the whole image. We also
integrate locally extracted feature [27] in our work.

The use of local feature representations has recently been considered for
the classification of objects [15, 1] and actions [7]. Bilen et al. [1] consider the
localisation – in the form of a window – as a latent variable that is learnt jointly
with other classification model parameters. Our framework generalizes feature
localization as we show that instead of using one window, using multiple is
beneficial for classification.

The use of multiple appearance contexts has been considered for recognizing
scenes [21]. However, that work relies on using different features to capture
those different appearance contexts. Recent work by Pandey and Lazebnik [18],
follows this line of thought and combines global GIST features with local HOG
features. Our work is complementary to these ideas. We focus on obtaining
different contexts from a single feature type. Yet, our framework is not restricted
to a single feature.

The central contribution of this paper is the use of appearance properties
that are shared by pairs of classes. The issue of sharing has so far been explored
more for object detection [23, 5, 17] than for object classification, where this is
more intricate to implement. In the case of classification we cannot assume that
training images come with the locations of objects. Sharing for classification is
therefore more challenging. It has been considered in the large margin framework
based on a pre-specified hierarchy [3]. We do not rely on such restriction. Sharing
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has also been implemented by relying on auxiliary information such as text [22]
or by constructing hierarchies from WordNet [14]. An interesting recent approach
for sharing used other detector information as cues [12]. As a matter of fact, there
has also been work that uses the output of classifiers to learn sharing between
classes [24]. In contrast to that approach, we learn the sharing together with the
classier itself. Moreover, we learn not only to share at the level of a class pair,
but also adapt the sharing window to the individual instance of the target class
(i.e. the window is not at a fixed relative position for the entire class).

3 Model Definition

To build our classifiers, we make use of the structural SVM formulation with
latent parameters [28]. In our model, input x ∈ X , output y ∈ Y = {c1, · · · , ck}
and latent parameters h ∈ H correspond to the image, its label, and a set of
bounding boxes, respectively. We use discriminant functions of the form fθ :
X × Y × H → R which scores triplets of (x, y, h) for a learnt vector θ of the
structural SVM model as

fθ (x, y, h) = θy · Ψy (x, y, h) (1)

where Ψy (x, y, h) is a joint feature vector that describes the relation among
x, y and h. In our model, each Ψy (x, y, h) concatenates histograms which are
obtained from multiple rectangular windows with the bag of words (BoW) rep-
resentation [27]. We use different windows to encode the 3 information channels,
i.e. global, local, and shared. We can write our feature vector for class y as

Ψy (x, y, h) =
(
Ψygl, Ψ

y
loc, Ψ

y
sh,c1

, · · · , Ψysh,ck
)

, where the components – again ex-

emplified for object classification – are:

Global Features: Ψygl = φ (x) is a histogram vector given image x, more specif-
ically a histogram of quantized densely sampled SIFT descriptors [13] over the
whole image x by using the spatial pyramid (SP) representation [27]. For the
global features, we use three levels (1× 1, 2× 2, 4× 4) for the SP.

Local Features: Ψyloc = φ (x, hyloc) is a histogram over an image part selected
with window hyloc, which roughly corresponds to a bounding box hyloc around
the instance of the target class. We use a two-level SP (1× 1, 2× 2) over SIFT
descriptors for the local feature vector φ (x, y, hyloc).

Shared Features: Ψysh,ŷ = KS(y, ŷ)φ
(
x, hysh,ŷ

)
is a histogram over a window hysh,ŷ.

It is a two-level SP over SIFT descriptors. Suppose S is the set of all class pairs
of on the one hand the target class y and on the other hand each one of the
auxiliary classes with which the target class is supposed to share information.
KS(y, ŷ) is an indicator function that outputs 1, if the label pair (y, ŷ) ∈ S, and
else is 0. Note that KS(y, ŷ) = KS(ŷ, y). We explain the procedure to obtain S
in section 5.
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We can now rewrite the discriminant function (1) by including these feature
vectors:

fθ (x, y, h) = θygl · φ (x) + θyloc · φ (x, hyloc) +
∑
ŷ∈Y

KS (y, ŷ) θysh,ŷ · φ
(
x, hysh,ŷ

)
(2)

where θygl ,θyloc, θ
y
sh,ŷ denote the parts of θy that correspond to the global, local,

and shared parameter vectors resp, i.e. we define θy =
(
θygl, θ

y
loc, θ

y
sh,c1

, · · · , θysh,ck
)

and θ = (θc1 , · · · , θck)
T

. The set of latent parameters can similarly be written

as hy =
(
hyloc, h

y
sh,c1

, · · · , hysh,ck
)

and h = (hc1 , · · · , hck)
T

.

We use a common or shared parameter vector θysh,ŷ to encode the similarity

between the labels y and ŷ. The equality θysh,ŷ = θŷsh,y means that the classes
y and ŷ share a common parameter vector. Not adopting that equality renders
the model heavier while experiments in section 6.4 show a drop in performance.
A graphical illustration of our model for a toy object classification task is shown
in Fig.1. The images x1, x2 are labeled as c1, c2 resp. While there are separate
class-specific parameter vectors for the global θc1gl , θ

c2
gl and local θc1loc, θ

c2
loc channels,

an identical parameter vector θc1sh,c2 is shared between the labels c1 and c2. The
latent parameters are used to learn instance specific shared, rectangular windows
hc1sh,c2 and hc2sh,c1 as well as the target class-specific rectangular windows hc1loc and
hc2loc.

θc1 θc2

x1

θgl
c1 θloc

c1 θsh, c2

c1

x2

Ψgl
c1 Ψloc

c1 Ψ sh, c2

c1

θgl
c2θloc

c2

hsh, c1

c2

Ψgl
c2Ψloc

c2Ψ sh, c1

c2

hloc
c1

hsh, c2

c1 hloc
c2

Fig. 1. Graphical illustration of our model for two images containing one target class
each. Different types of features are denoted in different colors. Best viewed in color.

4 Inference and Learning

4.1 Inference

The inference problem corresponds to finding a prediction rule that infers a class
label and a set of latent parameters for an unseen image. Formally speaking, the
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prediction rule gθ (x) maximizes eq.(1) over y and h given the parameter vector
θ and the image x:

gθ (x) = arg max
y∈Y,h∈H

fθ(x, y, h) (3)

Since the windows corresponding to the global, local, and shared models do not
depend on each other, the inference can be efficiently solved as follows:

gθ (x) = arg max
y∈Y

[
θygl · φ (x) + arg max

hy
loc∈H

[θyloc · φ (x, hyloc)]

+
∑

ŷ∈Y,ŷ 6=y

arg max
hy
sh,ŷ∈H

[
KS (y, ŷ) θysh,ŷ · φ

(
x, hysh,ŷ

)] ]
(4)

4.2 Learning

Suppose we are given a set of training samples {(x1, y1, h1) , . . . , (xn, yn, hn)} and
we want to learn a model θ to predict the class label of an unseen example. Here
we assume that each input xi has only one label yi. When the set of windows
hi are labeled for the training set, the standard structural SVM [25] solves the
following optimization problem:

min
θ

1

2
‖θ‖2+C

n∑
i=1

[
max
y,hy

[θy · Ψy (xi, y, h
y) +∆ (yi, y, h

yi
i , h

y)]− θyi · Ψyi (xi, yi, h
yi
i )

]
(5)

where C is the penalty parameter and ∆ (yi, y, h
yi
i , h

y) is the loss function. The
loss is taken to be ∆ (yi, y, h

yi
i , h

y) = 1 if yi = y, 0 else. Yet, as the window
labels are actually not available for training the classification model, we treat
them as latent parameters. To solve the optimization problem in eq.(5) without
the labeled windows, we follow the latent SVM formulation of [28]:

min
θ

1

2
‖θ‖2+C

n∑
i=1

[
max
y,hy

[θy · Ψy (xi, y, h
y) +∆ (yi, y, h

y)]−max
h

[θ · Ψ (xi, yi, h
yi)]

]
(6)

Note that we remove hyii from ∆ since it is not given.
The above formulation yields a non-convex problem and can be solved by

using the Concave-Convex Procedure (CCCP) [29]. Our problem of learning the
target class-specific θygl, θ

y
loc and shared θysh,ŷ model parameters is compatible

with the latent SVM formulation because the class labels and latent parameters
can be optimized for each image individually.

5 Choosing Shared Label Pairs

We have introduced the indicator function KS(y, ŷ) to allow for sharing only
between the class label pairs which are included in the set S, i.e. KS(y, ŷ) is 1 if
(y, ŷ) ∈ S, else it is 0. S can be designed in various ways. One can include all class
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pairs in S and let the learning algorithm determine the weights θysh,ŷ. However,
this approach may lead to a non-optimal solution since sharing between visually
very different classes can degrade the classification performance. Including all
the class pairs also leads to a computational complexity that is quadratic in
the number of classes. Alternatively, one can introduce additional binary latent
variables to learn which class pairs should be included in S. However, naively
minimizing the loss in eq. (6) with respect to those latent parameters will always
result in including all the pairs.

In our experiments, we assume that the classes that are often confused with
the target class in classification share enough visual similarities with the target to
turn them into good candidates to build the class pairs. We thus only activate
the pairwise features for such pairs. We learn a single threshold to obtain S
from the confusion tables of the validation sets. The super-threshold class pairs
extracted from the confusion table are symmetric but not necessarily transitive.
For example, if the ‘bicycle’ class shares with ‘motorbike’ then also vice-versa.
However, it may be that ‘bicycle’ shares with the class ‘motorbike’ and not ‘bus’,
but ‘motorbike’ shares with both classes ‘bicycle’ and ‘bus’.

6 Experiments

6.1 Datasets

We evaluate our method on the PASCAL VOC 2006 [4], Oxford Flowers17 [16],
Scene15 [11], and TV Human Interactions (Interactions) benchmarks: [19].

VOC2006: This dataset consists of 5,304 images with 10 object categories. We
extract dense SIFT features [13] at every fourth pixel at a single scale and
quantize them by using a 1024 words dictionary. We use the same training,
validation and testing splits as in [1].

Flowers17: The dataset contains 17 flower categories and 80 images from each
flower species. We use densely sampled Lab color values and quantize them
using an 800 words dictionary. The dataset has three predefined splits including
40/20/20 training-validation-testing images per class. The ground truth pixel-
wise segmentation is also available for some images but it is not used in this
paper.

Scene15: The dataset contains images from 15 scene categories, covering a wide
range, from natural scenes to man-made environments. We extract dense SIFT
features [13] at every fourth pixel at a single scale; and quantize them by using
a 1024 words dictionary. We apply the same experimental set-up as in [11] and
randomly sample 100 images 10 times for training and use the rest for testing.
Additionally we randomly pick 30 images for each class from the existing training
sets to validate the best threshold for sharing and use the 100 image training
splits to train our classifiers.
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Interactions: This dataset contains video sequences containing four human inter-
action types: hand shakes, high fives, hugs, kisses and an additional background
class. The videos are collected from over 20 different TV shows. We describe
the videos by a set of HOF and HOG descriptors [10] located at the detected
Harris3D interest points [9] and quantize them using a 1024 words vocabulary.
We use the same training and testing sets as [19]. We randomly pick 40% of the
original training set and use them to validate the selection of the best threshold
for sharing and report the performance of our method on the original split.

6.2 Implementation Details

We use a sparse encoding of the BoW feature representation in [27] for all 3 of
Ψygl, Ψ

y
loc, Ψ

y
sh,ŷ, with 5 nearest neighbors and the respective SPs of (1 × 1, 2 ×

2, 4× 4),(1× 1, 2× 2) and (1× 1, 2× 2) in these three cases for the images, and
(1, 2, 4), (1, 2) and (1, 2) combinations of frames for the videos. Moreover, we
adopt a coarse discretization of the latent space H by forcing the corners to lie
on an 8 × 8 spatial grid and at the boundaries of 32 equal temporal intervals
in the case of videos. Our inference and learning algorithms scale linearly with
the number of possible windows, thus this discretization significantly shortens
the computation times. As our experiments have shown, defining H at pixel
resolution did not substantially improve the classification performance.

6.3 Baselines

In order to evaluate the contribution of the global (gl), local (loc) and shared (sh)
features, we report the classification results for each of these feature types
individually, and also for their combinations, i.e. gl+loc, gl+sh, loc+sh and
gl+loc+sh. We refer to gl and loc as the baselines, corresponding to the work
by [27] and [1], resp.

6.4 Results

The results for the baselines and the proposed methods are depicted in Table 1.
It shows that the best feature selection always includes the shared features.
Some examples of inferred local and shared windows are illustrated in Fig. 2. We
provide further details about the selected class pairs and corresponding confusion
matrices in the supplementary material.

VOC2006: We can observe from Table 1 that using the shared features is always
useful. We obtain the best classification accuracy for the configuration ‘gl+sh’.
This setting improves the baseline method by 3.39%. We compare our algorithm
with three additional baselines as shown in Table 2 with the respective ‘gl+asym
sh’, ‘sh with gl’ and ‘gl+full sh’. For the first one, we do not enforce the symmetry
constraint θysh,ŷ = θŷsh,y. Although this model has a parameter vector with higher
dimension, ‘gl+sh’ still performs better. For the second baseline, in addition to
the global features, we use the whole image for sharing by setting all hsh to
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VOC2006 [4] Flowers17 [16] Scene15 [11] Interactions [19]

Baselines
gl[27] 53.83 65.58±4.33 75.93±1.95 34.40
loc [1] 54.82 63.14±4.01 74.42±1.54 35.20

Ours
gl+loc 54.55 68.72±3.15 77.32±1.92 37.20
loc+sh 55.16 65.19±5.06 75.16±2.53 37.60
gl+sh 58.21 66.08±3.95 76.47±1.65 40.00
gl+loc+sh 57.59 71.08±0.68 77.45±1.54 40.00

Table 1. Classification results. The results are given as the classification accuracy
averaged over the different target classes, in percentages. For the Flowers17 and Scene15
datasets the standard deviation of the accuracy is also given.

gl+sh gl+asym sh sh with gl gl+full sh

58.21 57.64 49.62 58.06

Table 2. The results for three additional baselines.

the entire image size. The result obtained from the second baseline shows that
sharing information through smaller learnt windows is beneficial. For the third
one, ‘gl+full sh’, we use all the class pairs to share, i.e. KS(y, ŷ) = 1 for all (y, ŷ)
pairs with ŷ 6= y. The result shows that sharing with all the label pairs results
in inferior performance.

Flowers17: We obtain an improvement of 5.5% using the combined configura-
tion of the ‘gl+loc+sh’ model. This is interesting as the dataset involves difficult,
fine-grained (subclass) classification, suggesting that the sharing framework bet-
ter exploits the subtle differences between classes. Adding the shared part of the
model always came out to be beneficial and enhance the classification perfor-
mance.

Scene15: In this case, we obtain an improvement of 1.52% in the mean classifi-
cation accuracy. Yet, this improvement is smaller than for object classification.
This may be because the classes are rather different from each other and sharing
visual features therefore holds less promise.

Interactions: In this dataset we obtain an improvement of 4.8% over the baseline
method. Again, the accuracy for classifying actions in these videos was improved
by adding shared features. This is interesting as the nature of the dataset is quite
different from the image classification datasets. The localization here is purely
temporal.

7 Conclusion

This paper provides a method for improved visual classification by sharing lo-
calized features between selected pairs of classes. We proposed the combined use



Classification with Global, Local and Shared Features 9

Fig. 2. Some inferred windows for images from VOC2006. Each row consists of two
samples for a ‘label 1’ and a ‘label 2’ class. Green and blue windows correspond to h1

loc

and h2
loc for the labels 1 and 2, resp. Yellow windows indicate those for the shared label

pairs h1
sh,2.

of global, local, and shared windows. The experimental evaluation has shown
that this framework is applicable to a variety of visual classification tasks such
as the classification of objects, scenes and actions. Though we have limited the
approach to learning pairwise class relations in this paper, the idea could be ex-
tended to sharing among larger class groupings by exploiting hierarchical class
taxonomies. In the future, we would like to explore this idea further. We also plan
to allow for the presence of multiple target classes by considering the recently
proposed multilabel structured output techniques [8].
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