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Abstract. The prohibitive amounts of time required to review the large
amounts of data captured by surveillance and other cameras has brought
into question the very utility of large scale video logging. Yet, one recog-
nizes that such logging and analysis are indispensable to security applica-
tions. The only way out of this paradox is to devise expedited browsing,
by the creation of hyperlapse. We address the hyperlapse problem for
the very challenging category of intensive egomotion which makes the
hyperlapse highly jerky. We propose an economical approach for trajec-
tory estimation based on Visual Odometry and implement cost functions
to penalize pose and path deviations. Also, this is implemented on data
taken by omni-directional camera, so that the viewer can opt to observe
any direction while browsing. This requires many innovations, including
handling the massive radial distortions and implementing scene stabi-
lization that need to be operated upon the least distorted region of the
omni view.

1 Introduction

With time, high quality video cameras becoming cheaper and the growth of so-
cial media platforms that give the opportunity to share videos have resulted in
people making videos more often. Recently the popularity of 360 degree view
cameras like Ricoh Theta has attracted people to shoot the videos of their fun
activities like bike riding, running, mountain climbing etc. Cheap storage de-
vices have made storage of long videos easy but it is quite time consuming to
watch and navigate through such large videos. One simple way to watch these
videos in a short time is to speed them up in order to create timelapse videos.
This results in a watchable short video in case of stationary cameras. But with



camera motion, which is actually the case most of the time with hand held or
head mounted cameras, this will heighten the apparent motion resulting in a
nauseating jumble. Some adaptive fast forward approaches [14] try to adjust
the speeds in different parts of the video so that stationary scenes are sampled
sparsely while dynamic scenes are sampled densely. Some timelapse and hyper-
lapse approaches combined with video stabilization have also been suggested for
conventional cameras.

Storyboard summarization based on keyframes selection is proposed in [17,18].
Video stabilization techniques can directly be combined with timelapse (before
or after). In [4,12] the camera path is generated by estimating pose using feature
mapping and this path is used to create a new smooth path for the camera for
stabilization. In [10,11], based on structure-from-motion (SfM) they render the
scene for a novel smooth camera path. Hyperlapse app from Instagram uses the
approach of stabilization after uniform frame skipping [6] and for stabilization
they use hardware stabilization approach of Karpenko et al. [7]. Hardware based
stabilization approaches involve dampening of camera motion using mechanical
means like inertial sensors (gyroscopes and accelerometers) with gimbals. As in-
stagram’s approach uses inertial sensor data, it cannot be applied to existing
videos.

Non-uniform timelapse with varying skipping rate across the video as a function
of scene content is proposed in [3]. The most sophisticated approach for hyper-
lapse creation is from Kopf et al. [8] which is based on SfM so computationally
very expensive. Joshi et al. [5] came up with real time hyperlapse creation ap-
proach based on optimal selection of frames using frame matching and poses
hyperlapse as a frame sampling problem by optimizing an energy function. Very
recently a saliency based hyperlapse approach for 360° videos have been pro-
posed [9]. They generate hyperlapse by optimizing over saliency and motion
smoothness followed by saliency aware frame selection.

Our work is based on smart sampling of the input frames depending on a cost
function which works upon the camera path obtained by visual odometry [16].
We include the following costs in the cost function: (a) pose change cost between
frames, (b) smooth path deviation cost by fitting a smooth approximate path to
the VO camera path, (c) velocity and acceleration costs. The idea is to sample
more frames when pose change of camera is significant. This method can be used
for normal cameras as well as for omni-cameras, but creating omni-summaries
is different from normal in terms of handling massive radial distortion and ap-
plying stabilization on the basis of the least distorted spatial regions of input
video.

2 Framework

The proposed algorithm can be divided in two main parts: Visual Odometry
(VO) and selection of frames based on VO.



2.1 Visual Odometry for Omnidirectional Camera

Preparing images in ‘Ready for VO’ form: As VO is a feature match-
ing based process, all the video frames must be undistorted. The Ricoh Theta
S camera consists of two fish-eye lenses each giving a view of more than %
steradian. In recorded video, frames are depicted as two discs side by side, with
each showing one hemispherical view captured by one lens. Since the view is
captured as a spherical image, it is very much distorted at the edges of each of
the discs, and is hence difficult to restore. Observing that the central part is least
distorted, we crop the central part from either of the discs and undistort this
part only. This cropped part is undistorted using D. Scaramuzza’s OCamCalib
toolbox for MATLAB [15]. We observed that central 400X400 part proved to
be good enough in case of 1920X1080 resolution. In case of 1280X720 resolution
this size reduces to 300X300. This is not a very strict restriction but optimal in
the sense that the above stated size frames can be undistorted well and in the
final cropped versoin enough number of robust feature points can be found for
VO. If we crop a bigger portion, there will remain some distortion which can
cause matching errors and if we crop smaller portion there may not be enough
features in the final cropped frame for VO.

The manufacturing company of Ricoh Theta S provides an app RICOH THETA
[2] which converts the image in the 2 disc form of into equi-rectangular form.
This equi-rectangular form video can be used to look into any specific direction
using the same app. This feature of the app makes available hyperlapse data in
equirectangular form, which is very convenient.

Finding VO: Visual odometry (VO) is the process of estimating the egomotion
of an agent observing the changes in images of the attached camera due to
induced motion. Two consecutive camera frames at different camera positions
are related by rigid body transformation Ty ;1 € R*x4 given as:

Rir_1ter
Tk',k,—l—|: kbk 1 k,llc 1:| (1)

where Ry ;-1 € R3*3 is the rotation matrix and tj x—1 € R3*! is the transla-
tional vector. Our main task is to compute the relative transformations T} 1
and then to get the full trajectory of the camera by concatenating the trans-
formations. Main components of the VO system are shown in Fig. 1(f). Our
algorithm does not include last step of VO which is bundle adjustment. Rota-
tion and translation are extracted from the essential matrix E by 2-D to 2-D
motion estimation and E can be computed from 2-D to 2-D feature correspon-
dences. Nister's five-point algorithm has been used for motion estimation [13].
After extracting R and t, T} ;_1 is obtained and camera pose can be found
incrementally as shown in Fig. 1(g):

Cr=Cr_1Ty -1 (2)



2.2 VO based Hyperlapse Algorithm

We propose a cost function based on VO and choose frames which follow the
target speed-up rate, yet keep their pose close to the smooth path and the
pose change between consecutive frames is also minimal. The following costs are
included:

‘ Image Sequence ‘

| ~
Theak Tiket
‘ Feature Detection ‘ /_ \
Ck1
U A K" frame QC ki1

Feature Matching (or Tracking) ‘
U K-1™frame

k+1™ frame

‘ Motion Estimation ‘

() (8)

Fig.1: (a), (b) are one omni-frames in two circle form and equi-rectangular frame.
(c), (d) are 400x400 central cropped part and its undistorted version and (e)
is 300x300 part used for VO. (f) is Block diagram of VO system used in our
algorithm [16], (g) is illustration of VO process.



Pose Change Cost: One observation is that even minor camera pose change
causes significant content change in consecutive frames (rotation causes more
change than translation) assuming the environment is sufficiently diverse. So, in
pose change cost, more weight is given to orientation change. Camera poses are
obtained as 7D vectors (z, y, z and 4D quaternions) and 6D vectors (z, y, z
and 3D Euler’s angles (pitch, roll and yaw)). Pose change cost is computed as:

Cn(i,J) = | Pey=(d) — Puy=(0)||
+ Qp * | Ppiten(§) — Ppiten ()| + Qy * | Pyaw (§) — Pyaw (9)]|
+Qr * | Pron(j) — Prou(i)||  (3)

Here P,,.(j) is 3D translation coordinates, Ppitcn(j), Pyaw(j) and Proy(j) are
the rotation coordinates of the j** camera frame and Qp, Qr, Qy are weights
given to pitch, roll and yaw change respectively.

Smoothness Deviation Cost: For the resultant hyperlapse to look good in
terms of frame-to-frame transitions, frames should be sampled such that they lie
near to a smooth camera path. For the obtained camera path P as a sequence
of 7D pose vectors, a smooth camera path .S is obtained by fitting a cubic spline
on the camera path obtained from VO as shown in Fig. 2 and the cost for j**
frame is defined as:

Ca(j) = | Pry=(5) = Say=(I + w * | Puat () — Squat ()l (4)

Here P,,.(j) and Sy (j) are 3D translation coordinates for actual and smooth
camera path respectively, Pyyq:(j) and Squqt(j) are 4D quaternions vectors for
actual and smooth camera path respectively for j** camera frame.
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Fig.2: VO path and smooth path obtained by spline fitting.

Velocity and Acceleration Costs: As in [5], to ensure that our result achieves
the desired speedup we use a velocity cost when the frame skip deviates from



the target speedup v.
.. . . . 2
cs(i, J,v) = man([|(j — @) — vll3, 7) (5)

Here i, j are consecutive frames to be selected in hyperlapse, v is target speed up.
Previous costs lead to selecting frames such that it balances between following a
smooth camera path versus violating target speed-up. There can be cases where
violating speed-up rate may lead to frames following a smooth path but it might
cause a perceptual jump due to sudden change in speed-up rate. To avoid these
sudden jumps in speed-up rate causing perceptual jumps, we use an acceleration
cost:

ca(hyi, §) = min(|[(j =) = (i = B)|3 , 7a) (6)
Here h,i,j are consecutive frames to be selected in hyperlapse video, 75 and 7,
are the upper bounds so that not a large number of frames are skipped.

Adaptive target speed up: Parts of the input video where there is sudden
camera movement, at the same global speed-up result might be jerky at those
places as we are not using frame-to-frame matching. Taking inspiration from
equal motion hyperlapse of [5] we define adaptive speed-up depending upon the
change in camera pose:

Qd(i) = Pquat(i + 1) - Pquat(i) (7)
Qas(i) = fsigm([|Qa(?)]) (8)
fsignL(x) = ﬁ (9)

. median(Qqs)
vedi) = 0 ) 1)

Here Pyyqi(i+1), Pyuqt (i) are quaternions vectors for actual camera path for
i+ 1) and i*" frames respectively, a,c are sigmoid parameters and v,4(i) is
Y. g
target speed up for i*" frame.

Finding optimal path: Using all the costs, the total cost with different weights
for different components is defined as:
C(h,i,j,v) = 1,Cs(i, J, v) + 1aCalh, i, §) + 1 Cn(i, j)
+1a(Ca(i) + Ca(j)) (11)

For obtaining optimal path P, define the cost of a path p for a given target
speed-up v as:

S

-1

P(p,v) = ) Clp(t—1),p(t),p(t +1),0) (12)

t=1



P = arg min &(p,v) (13)

p

Optimum path calculation is done using algorithm 1 which consists of two
passes. The first pass builds a dynamic cost matrix D,, (function of target speed-
up v). For i*" frame, the next frame is to be chosen from among the window of
w successive frames.

Algorithm 1 : Frame selection

Input: v
Initialization:
for i = 1 to g do
for j =i+1toi+w do
Do (i) = la(Cali) + Ca(5)) + InCn(i, ) + L.Co iy 5, vaali))
end for
end for
First Pass: populate D,
for i = g to T do
for j = i+1toi+w do
¢ = 1a(Cali) + Cal5)) + InCn(is ) + L. iy 5, vaa(i))
Do (i) = ¢+ miniy [Du (i — k1) + 1aCali — ki, )]
Ty(i,j) = c+ arg ming_,[Dy(i — k, 1) + 1aCa(i — k, 1, 7)]
end for
end for
Second Pass: track back min cost path
(s,d) = arg miniT:’?'ng:H_le(i,j)
p=<d>
while s > g do
p = prepend (p,s)
b= Ty(s,d)
d=s,s=0b
end while
Return: p

The algorithm populates D,, by iterating over its entries, where each element
D, (i, j) represents the running minimal cost path with last two frames as ¢ and
j- At each step of constructing D,,, cost functions Cy, C,,, and Cy are evaluated
at ¢ and 7, and the preceding frame h with the lowest cost is searched for, which
depends on the previous costs and Cy. h is stored in a traceback matrix T, for
the second pass of the algorithm. After fully populating D, the second pass
finds an optimal path by finding the minimal cost in the rows and columns of
D,,.



3 Observations and Results

Since this is VO based process which is a feature matching based process, we can
not use very low resolution cameras (either conventional or omni cameras like
Ricoh Theta S) as low resolution frames increase the possibility of wrong fea-
ture matching which might ruin the accuracy of VO. For conventional cameras
(GoPro Hero 4), we need not do any extra-preprocessing like cropping before
undistortion as the inherent distortion is not too severe so the bigger full size
frames can be used for VO. Using cropped frames for VO (relatively fewer fea-
tures for matching) in case of the Ricoh camera does not change the VO quality
much. We compare the odometry obtained from both cameras by matching dif-
ferent numbers of features after making a video capture with both cameras fixed
rigidly to one another (so that their motions are identical, barring a small con-
stant displacement), and choose that number for which the shape of VOs match
the most. One more key observation here is that only the shape of VO matters,
not their absolute values. On comparing the VO from both spheres, we observe
that the shape is related irrespective of which disc we use for VO Fig. 3(b),
thus confirming that the VO from any Ricoh sphere can undoubtedly be used
for hyperlapse. The displacement in curves is observed because of the opposite
direction of VO process accumulation error.
VO of raw video captured by head mounted camera can directly be used for hy-
perlapse, no unnecessary jerks are observed in hyperlapse but raw input videos
captured by hand held camera are shaky due to induced vibrations in hand
because of vehicle as in Fig. 3(a) so VO is not smooth. So VO of raw videos
captured by hand held Ricoh Theta S can not be used directly for hyperlapse as
unnecessary jerks can be observed in hyperlapse. In this case, a prior stage pf
stabilization is applied before the VO as shown in Fig. 3(a).
We compare our method against Instagram’s method (timelapse followed by
stabilization) for conventional cameras by creating VO based hyperlapse with
centrally cropped and undistorted frames. The measures used for comparison are
the number of frames selected at sharp camera path points, mean and standard
deviation of consecutively selected frames at these sharp camera path points. We
also introduce a standard deviation based measure which is defined as follows:
No. of non zero pixels in std. dev. image

_ 14
measure Total pizels in std. dev. image (14)

Better method:

1. selects more number of frames.
2. gives lesser ghostly mean and standard deviation.
3. gives lesser standard deviation based measure.

In table 1, we see that for our method, as compared to instagram’s, more frames
are selected at sharp turns and standard deviation based measure is also lesser.
In Fig. 3, we see that mean and standard deviation for our method are less
ghostly.



Standard deviation based measure No. of frames chosen
Timelapse+Stabilization|Our Method|Timelapse+Stabilization|Our Method
Slotl at 3x 0.9870 0.9531 26 40
Slot1 at 6x 0.9934 0.9490 13 20
Slot2 at 3x 0.9527 0.9220 33 46
Slot2 at 6x 0.9749 0.9456 18 30
Slot3 at 3x 0.9997 0.9985 29 46
Slot3 at 6x 0.9986 0.9951 15 25

Table 1: Standard deviations based measure of 5 consecutive frames in case of
3x speed up and of 3 consecutive frames in case of 6x speed up is listed in table.
This measure is defined as per equation 14. Also, number of chosen frames for
different video slots at different speed ups have been shown in table.
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Fig.3: (a): yaw curves for raw and pre-stabilized input video. (b): yaw curves
from different spheres. (c): Consecutive selected frames and their mean and
standard deviation. In case of VO based hyperlapse mean and standard deviation
are less ghosted. We are comparing at a speedup of 3x with ‘timelapse followed by
stabilization’ which is equivalent to instagram’s hyperlapse technique. Numerical
value of standard deviation based measure has been calculated as per equation

14.
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Fig. 4: Comparision of number of frames chosen in ours and Instagram’s hyper-
lapse technique for different video slots at different speed ups. In case of normal
going video number of frames selected in both are same which ensures that dense
sampling takes place at sharp camera motion points only.

The poststabilization of omnidirectional hyperlapse is an issue in dual sphere
format. Dual fisheye sphere format video is not accepted by RICOH THETA
app for converting into equirectangular form (which is of main interest) after
any modification. This app accepts only raw videos captured by Ricoh Theta S.
So an alternative approach is to apply hyperlapse on equirectangular video which
can be stabilized by facebook stabilization app for equirectangular videos [1] (to
be launched in near future) and then we can use this stabilized hyperlapse to
see into any specific direction using RICOH THETA app. Prestabilization for
VO is done by combining all ‘Ready for VO’ frames into a video and stabilizing
that sequence. This is equivalent to stabilizing all full frames, converting them
to ‘Ready for VO’ form and then finding VO.

4 Conclusion

Our work of creating hyperlapse for egocentric videos is a novel approach based
on Visual Odometry. Moreover, we implement our approach on omni-directional
camera so that there is no question of losing information in any direction and
user is also allowed to select post capture viewing direction. To handle the issue
of egomotion we use cost function based approach and introduce various costs
which helps the hyperlapse to become smooth. To handle omni-directional cam-



era (excessive distortion) we introduce some pre-processing steps like cropping
and undistortion. We also state the problems faced while trying to stabilize the
omni-directional video.
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